Hydrogen Production Innovation

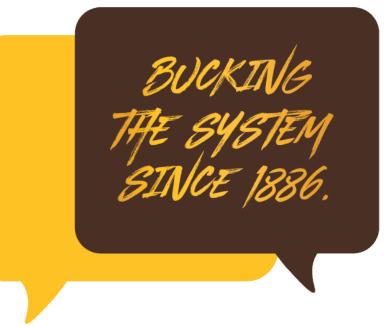
Holly Krutka, PhD

Executive Director School of Energy Resources

Eugene Holubnyak

Director SER Hydrogen Energy Research Center

Prepared for the Joint Minerals, Business and Economic Development Committee


May 9, 2024

THE WORLD NEEDS MORE COWBOYS.

School of Energy Resources

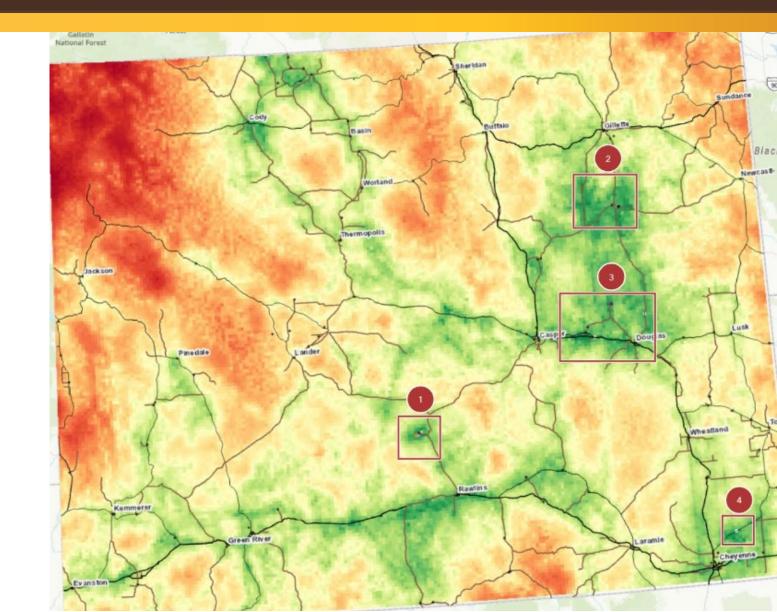
SER's Mission: Energy-driven economic development for Wyoming



	Hydrogen Generation Method	Water Consumed per H ₂ Produced (kg/kg)		
	Electrolysis	8.9		
	Steam methane reforming (natural gas)	4.5		
	Auto-thermal reforming (natural gas)	3.8		
A State	Coal gasification (Wyoming specific)	Under investigation		

1200

in the


- New market for Wyoming coal
- Approach to using stranded wind
- Draw investment to Wyoming
- Industry support and interest
- Potential use for produced water
- Industry support and engagement
- Significant potential for energy-driven economic impact

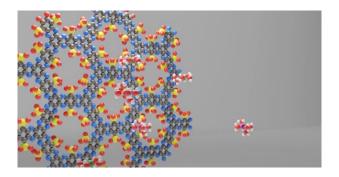
Hydrogen from Wyoming Natural Gas

- Suitability model considering no company-specific infrastructure
- This model indicates the best areas for hydrogen to be produced in WY
 - Powder River Basin
 - Greater Green River Basin
 - Denver-Julesburg Basin

Produced Water and Natural Gas to Hydrogen

- "SCWDO-SMR" process pilot to be tested in Wyoming
- Cleans produced water with advanced distillation
- Improves efficiency of steam methane reforming
- Hiring five UW students
- Total Project: \$10M
 - Federal: \$5 million
 - State: \$2.75 million (WEA) + \$550k (SER)
 - Private: \$750k (EPC) + \$950k (Williams)

Produced Water Treatment is Costly for Operators


Treatment of Produced Water

- General treatment: removal oil and grease, suspended solids, bacteria and iron
- Advanced treatment: safe surface discharge; extends to the removal of salt, ammonia, and dissolved organics

Cost Breakdown	Cost Range, \$/bbl			
Sourcing from ground or surface water	\$0.15-0.60/bbl avg			
Storage/transportation	\$0.50-1.50/bbl avg \$4.00-5.00/bbl long-haul			
Disposal	\$0.40-1.00/bbl avg			
Treatment – Recycling	\$0.20-0.85/bbl avg >\$0.85/bbl for high chemical demand			
Treatment - Advanced	\$0.90-3.00/bbl membrane \$2.50-9.00/bbl thermal			

RESEARCH PROJECTS

Developing technologies for recovering lithium from produced waters and other brines.

Working with **Materials Modification Inc**. to develop selective membranes for lithium recovery from mixed brines.

Working with SER researchers and Williams on a Wyoming Energy Authority sponsored project. The goal of this project is to evaluate the feasibility of producing hydrogen in Wyoming as an energy resource. CEPWM's role in this effort is to identify viable water resources, which are critical to producing hydrogen through electrolysis, and conduct treatability assessments of these waters for the purposes of producing the hydrogen.

Director Jonathan Brandt, Professor of Civil and Architectural Engineering

PRODUCED WATER TREATMENT | RESOURCE RECOVERY | REDUCED ENVIRONMENTAL IMPACTS

Coal Derived Membranes for Water Treatment

Jonathan Brant, PE, Ph.D. UW Professor / CEPWM Director

University of Wyoming, Civil & Architectural Engineering

- Carbon Enhanced Filtration & Desalination Membranes
- Magnetic Conditioning for Reducing Membrane Specific Energy Consumption
- Reducing Membrane Fouling for Water Reuse

Reference Materials

H₂ERC Current Externally Funded Projects

WYOMING

- Desalination and Steam Methane Reforming with Williams, Los Alamos National Lab, and Engineering Procurement & Construction, LLC (New)
 - **\$10M**, 50% cost-share, DOE NETL funded
 - \$2.75M WY Energy Matching Fund
 - Charles Nye PI
- Geologic Hydrogen Production, Bureau of Economic Geology lead (New)
 - \$1.7M, ARPA-E, 10% cost-share
 - Charles Nye, Co-PI
- Advancing Blue Hydrogen Production and Transport Infrastructure In Wyoming (In progress)

Los Alamos

- \$650k, WY Innovation Partnership
- Dr. Haibo Zhai PI

Idaho National Laboratory

 H₂Net-Zero Scenario for Wyoming – DOE NETL (\$650k) – final technical report

	SER Support of Research on Campus			
	Phase I: Hydrogen Make, Move, Use or Store	21	21	106
	mase I. Hydrogen wake, wove, use of store 20 19	20	16	95
		21	21	109
	Soheil Saraji – A Multiscale Study of Hydrogen Geochemical Reactivity and Transport for Geo- Storage in Deep Saline Aquifers – Petroleum Engineering	18	17	86
		23	20	107
2.	 Charlie Zhang, Selena Gerace, Muskan Kuinkel – Economic analysis of building new pipelines vs converting existing natural gas pipelines in gaseous hydrogen transportation – Civil and Architectural Engineering 	17	18	87
		20	18	96
		20	21	88
		17	17	85
3.	Saman Aryana - Phase Behavior of Hydrogen and Blended Gas – Chemical Engineering	17	18	85
		25	23	119
	Kam Ng – Experimental Investigation of the Effect of Underground Hydrogen Storage on the 17	18	16	88
	Hydraulic and Mechanical Properties of Rock Reservoirs – Civil and Architectural Engineering 19		20	100
F	 Sarah Buckhold, Michael Stoellinger, Jonathan Naughton – Stranded Wind Energy for Hydrogen Production in the State of Wyoming – Mechanical Engineering 	19	21	106
э.		20	18	91
		21	19	99
6.	. Haibo Zhai – Technological Learning and Resources Required for Large-Scale Blue Hydrogen Production toward Energy Earthshot Target – Civil and Architectural Engineering	17	18	95
		18	18	91
	20 20 1 <mark>9</mark>		20	97
7.	Minou Rabiei, Morteza Dejam, Vamegh Rasouli – Feasibility Study of Developing Salt Caverns for Hydrogen Storage in Wyoming – Petroleum Engineering	21	20	98
		23	20	101

-						
2	SER Support of Research on Campus			21	21	106
Dhaca II. Uudragan Maka Maya II.a ar Stara				20	16	95
F	Phase II: Hydrogen Make, Move, Use or Store			21	21	109
				18	17	86
				23	20	107
	18 19			17	18	87
1.	Charlie Zhang, Selena Gerace, and Danish Kumar - Developing a Smart, Safe, Sustainable, Resilient (SSSR) Hydrogen Transport Ecosystem in Wyoming - Civil and Architectural Engineering			20	18	96
			20	21	88	
				17	17	85
				17	18	85
2.	Haibo Zhai - A Multi-Scale Computing Framework for Advancing Hydrogen Transportation Infrastructure - Civil and Architectural Engineering			25	23	119
				18	16	88
-		0		19	20	100
3.	Saman Aryana - Hydrogen Production through Coal Gasification – State of the Art and Future Directions - Chemical & Biomedical Engineering	id		19	21	106
				20	18	91
				21	19	99
				17	18	95
				18	18	91
				18	20	97
				21	20	98
				23	20	101

Hydrogen Production Innovation

Holly Krutka, PhD

Executive Director School of Energy Resources

Eugene Holubnyak

Director SER Hydrogen Energy Research Center

Prepared for the Joint Minerals, Business and Economic Development Committee

May 9, 2024

THE WORLD NEEDS MORE COWBOYS.

School of Energy Resources