

August 12, 2021

Dr. Richard Boardman

Dr. Steve Aumeier

An New Energy Business for Wyoming

Transforming the energy paradigm

TodayElectricity-only focus

Future Energy System

Integrated grid system leverages contributions from nuclear fission beyond electricity

Wyoming 2021: Economic Growth with Zero-Emissions Energy Sources

Is there a role for nuclear in Wyoming?

- 1. **Production** the creation of value-add products using clean energy
- 2. Manufacturing design and fabrication of components and systems to do so
 - For national and global markets
 - Key is "incremental provisioning"
 - Scalable capital build-out
 - Broadens the clean energy products value chain of Wyoming resources

Net-Zero Energy Services & ☐ Supply Chain Reactors and Components

A new Paradigm: Integrated Energy Systems with Nuclear

- □ Industrial energy needs
 - Electricity
 - Steam
 - Heat (Thermal Power)
- □ Target Large Industries
 - Transportation fuels
 - Fired heaters / Steam boilers
 - Polymers & Plastic
 - Iron & Steel
 - Fertilizers
 - Minerals
- ☐ Keys to success
 - 1. Hydrogen is key energy currency
 - 2. Flexible operations cansupport the grid
 - 3. Energy storage is imperative

Large-Scale Hydrogen Markets

Two paths to H₂ Earthshot Target (\$1/kg-H₂ within a decade)

Electrolysis while dispatching as spinning or non-spinning reserves

Zero-Emissions Hydrogen from Steam-Methane Reforming

Natural Gas Reforming: CCS with nuclear microreactor energy enhancement

Market Arbitrage: Buy low, Sell high

Electrochemical Conversion of Natural Gas Condensates into Polymers & Hydrogen

F.T. Carbon Conversion to Fuels and Chemicals (CCU)

Modular Ammonia Plants

3.0 Tonne/day skid-mounted production system

- Local production for agriculture Co-Ops
- Use by power plants for NOx Selective Catalytic Reduction

Iron and Steel Making

- Flash-Iron Technology
- Direct reduced iron with hydrogen
- Scalable to mini-mills
- Fed directly to electric-arc furnace

Pilot plant at University of Utah: Professor HY Sohn

Advanced reactor future state: One size does not fit all

Researchers at Idaho National Laboratory are collaborating with industry and academia to develop nuclear reactor concepts of various sizes for various use cases.

Advanced Reactor Design Concepts

Benefits:

- Enhanced safety
- Versatile applications
- Reduce waste
- Use advanced manufacturing to save money

60+ private sector projects under development

SIZES

SMALL

1 MW to 20 MW

Micro-reactors

Can fit on a flatbed truck.

Mobile. Deployable.

MEDIUM

20 MW to 300 MW

Small Modular Reactors

Factory-built. Can be scaled up by adding more units.

LARGE

300 MW to 1,000 + MW

Full-size Reactors

Can provide reliable, emissions-free baseload power

- Advanced Reactors Supported by the U.S. Department of Energy

TYPES

MOLTEN SALT REACTORS -

Use molten fluoride or chloride salts as a coolant.
Online fuel processing. Can re-use and consume spent fuel from other reactors.

LIQUID METAL FAST REACTORS -

Use liquid metal (sodium or lead) as a coolant. Operate at higher temperatures and lower pressures. Can re-use and consume spent fuel from other reactors.

GAS-COOLED REACTORS -

Use flowing gas as a coolant.
Operate at high temperatures to efficiently produce heat for electric and non-electric applications.

Accelerating advanced reactor demonstration and deployment

Natrium Reactor TerraPower & General Electric 2028

Hermes Kairos (Kairos Power 2026

Xe-100 X-energy 2027

energy

Aurora Oklo Inc. **TBD**

2030

SMR UAMPS & NuScale 2029

LIAMPS

MCRE Southern Co. & TerraPower 2025

TerraPower.

Southern Company

LOTUS Test Bed NRIC 2024

Project Pele Microreactor

DoD

2023-2024

Wyoming Business Development

- Clean energy markets based on Wyoming resources
- Cartridge and microreactors fabrication
- Skilled crafts and operator education and training
- Engineering education
- Research, development, and testing

☐ Manufacturing of Supply Chain Reactors and Components

- ☐ Production of Net-Zero Energy Services & Products
- Manufacturing of Supply Chain Reactors and Components

Can Nuclear Compete? Natural Gas vs Nuclear LWR

Switching between electricity and hydrogen markets

How nuclear can enhance conventional steam methane reforming production of hydrogen

Joint EERE-NE H₂ Production Demonstration Projects

Three projects have been announced for demonstration of hydrogen production at nuclear power plants

- Demonstrate hydrogen production using direct electrical power offtake from a nuclear power plant
- Develop monitoring and controls procedures for scaleup to large commercial-scale hydrogen plants
- Evaluate power offtake dynamics on NPP power transmission stations to avoid NPP flexible operations
- Produce hydrogen for captive use by NPPs and first movers of clean hydrogen

Schedule:

- Exelon: Nine-Mile Point NPP; LTE/PEM Vendor 1; using "house load" power; PEM skid testing is underway at NREL; H2 production beginning ~Jan. 2022
- Energy Harbor; LTE/PEM Vendor 2; power provided by completing plant upgrade with new switch gear at the plant transmission station; installation to be made at next plant outage; contract start anticipate by Oct. 2022
- Xcel Energy: HTE/SOEC Vendor 1; Project negotiations are being finalized. Tie into plant thermal line engineering is being planned; Official project start anticipated around Jan. 2022.

Davis-Besse Nuclear Power Plant LTE-PEM Vendor 1 Nine Mile Point Nuclear Power Plant LTE/PEM Vendor 2

Thermal & Electrical Integration at an Xcel Energy
Nuclear Plant HTE/Vendor 1

Integrating systems for the nation's net-zero future

Tri-Lab Demonstration of Integrated Energy Systems

Electrical-to-Thermal Energy Storage

Charging Cycle for ETES

Discharging Cycle for ETES

